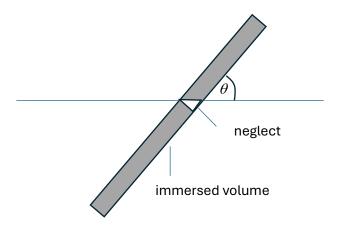

Teacher notes Topic A

A problem on torques leading to an IA


A uniform cylindrical buoy of density ρ_b is tethered to the seabed with a cable. The buoy has length *L*, diameter *D* and makes an angle θ with the surface of the water. The density of water is ρ_w . The bottom of the buoy is at depth *d* below the surface of the water.

The force diagram shows the three forces acting on the buoy and the point of application of each force: the weight W, the tension T and the buoyancy force F_{b} .

The weight of the buoy is given by $W = \rho_b Vg$. The volume is $V = \text{area} \times \text{height} = \frac{\pi D^2}{4} \times L$ and therefore $W = \rho_b g \frac{\pi D^2}{4} L$. The buoyancy force F_b is given by $F_b = \rho_w V_{\text{imm}}g$. To calculate the immersed volume ignore the volume colored white in the figure below.

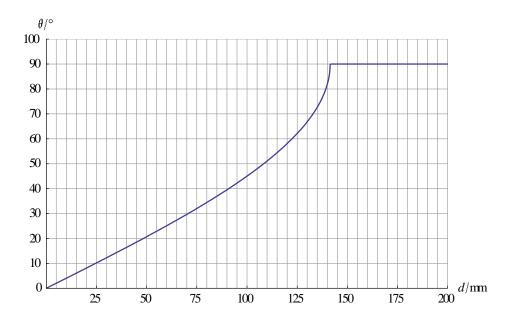
Then
$$V_{\text{imm}} = \frac{\pi D^2}{4} \times \frac{d}{\sin\theta}$$
. Therefore $F_{\text{b}} = \rho_{\text{w}}g \frac{\pi D^2}{4} \frac{d}{\sin\theta}$.

Taking torques about an axis through the point of application of the tension force T we find:

$$\rho_{\rm b}g\frac{\pi D^2}{4}L \times \frac{L}{2}\cos\theta = \rho_{\rm w}g\frac{\pi D^2}{4}\frac{d}{\sin\theta} \times \frac{d}{2\tan\theta}$$

i.e.

$$\rho_{\rm b}L^2 = \rho_{\rm w} \frac{d^2}{\sin^2\theta}$$


Finally,

$$\sin\theta = \frac{d}{L}\sqrt{\frac{\rho_{\rm w}}{\rho_{\rm b}}}$$

It is interesting that the angle does not depend on the diameter *D* of the buoy.

This can lead to an interesting IA. You can investigate the dependence of the angle on *d* or *L* or $\rho_{\rm b}$. For example, for fixed *L* and $\rho_{\rm b}$ a graph of sin θ against *d* would be a straight line. A graph of θ against *d* would be (this is for *L* = 200 mm and $\frac{\rho_{\rm w}}{\rho_{\rm b}}$ = 2):

IB Physics: K.A. Tsokos

You need to pay attention to

- a method by which the angle θ may be accurately measured.
- why angles near 90° are more difficult to measure.
- if you are investigating the dependence of the angle on *d* how would you deduce the value of ρ_b and the value of *L*?
- give a physical reason why $\theta \rightarrow 90^{\circ}$ as the depth increases.